Acta Cryst. (1996). C52, 1027-1028

2,2'-Piperazin-1,4-diyldimethylenebis[6-(benzyliminomethyl)-4-methylphenol]

K. Gunasekaran, ${ }^{a}$ L. Govindasamy, ${ }^{,}$S. Shanmuga Sundara Raj, ${ }^{a}$ D. Velmurugan, ${ }^{a *}$ S. Karunakaran ${ }^{b}$ and M. Kandaswamy ${ }^{b}$
${ }^{a}$ Department of Crystallography and Biophysics, \dagger University of Madras, Guindy Campus, Madras 600 025, India, and ${ }^{b}$ Department of Inorganic Chemistry, University of Madras, Guindy Campus, Madras 600 025, India

Abstract

The title compound, $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{2}$, was synthesized and the crystal structure solved using X-ray diffraction techniques. The structure has half a molecule in the asymmetric unit and $Z=2$. The molecule possesses a centre of inversion. The phenyl and benzyl rings lie nearly perpendicular to each other, and the structure is stabilized by van der Waals type interactions.

Comment

A perspective view of the title molecule, (I), showing the atom-numbering scheme is presented in Fig. 1 (the atoms which are not numbered are symmetry related to the numbered atoms). In the phenyl ring (Cl-C6) the average bond length of 1.390 A agrees with average values reported in the literature (Domenicano, Vaciago \& Coulsun, 1975). The N atom, N19, of the piperazine ring is $s p^{3}$ hybridized (Perales, Cano \& Garcia-Blanco, 1977).

(I)

The torsion angles $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 18-\mathrm{N} 19\left[-46.4(3)^{\circ}\right]$ and $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 18-\mathrm{N} 19\left[136.0(3)^{\circ}\right]$ define the position of the piperazine ring in the molecule. The substituent at N19 is in an equatorial position (Allinger, Carpenter \& Karkowski, 1965). There is half a molecule in the asymmetric unit and two molecules in the unit cell. One half of the molecule is related to the other
\dagger DCB contribution No. 867.
(C) 1996 International Union of Crystallography

Printed in Great Britain - all rights reserved
by a centre of inversion. Atoms C20 and C21 of the molecule are connected to C 21 and C20 of the second half by $1.512 \AA$ and vice versa.

Fig. 1. Perspective view of the molecule with atom-numbering scheme.
All the atoms in the phenyl ring lie in a plane with a maximum deviation of ± 0.006 (3) A , for C 1 . The phenyl ring forms a dihedral angle of $85.6(1)^{\circ}$ with the benzyl ring to avoid making short contacts. The piperazine moiety makes dihedral angles of 89.9 (1) and $67.5(1)^{\circ}$ with the phenyl and benzyl rings, respectively.
The $\mathrm{C}-\mathrm{O}[1.355(4) \AA$] and $\mathrm{C}=\mathrm{N}[1.268$ (4) \AA] distances are comparable with reported values (Allen et al., 1987). An intramolecular short contact is observed between O 7 and N10 [2.597 (3) A]]. A stereoview of the packing of the molecules down the a axis is shown in Fig. 2. Packing of the molecules is stabilized by van der Waals interactions.

Fig. 2. Stereoview of the packing of molecules down the a axis.

Experimental

Paraformaldehyde (2 mol) and piperazine (1 mol) were stirred in 15 ml of acetic acid for an hour. 4-Methyl-2-formylphenol (2 mol) dissolved in 20 ml of acetic acid was added and stirred for 6 h . This 2:2:1 mixture was subjected to Schiff base condensation with two moles of benzylamine to yield the title compound (Hodgkin, 1984). Then the whole mixture was neutralized using saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and the compound was extracted using chloroform. The crude sample was purified by silica-gel column using n-hexane-chloroform ($30: 70 \mathrm{v} / \mathrm{v}$) solvent mixture as the eluent. The compound was crystallized by slow evaporation from ether/ $/ \mathrm{CHCL}_{3}$ mixture.

Crystal data

$\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{2}$
$M_{r}=560.7$
Monoclinic
$P 2_{1} / n$
$a=5.931$ (2) \AA
$b=20.811$ (3) \AA
$c=12.479(1) \AA$
$\beta=98.68(3)^{\circ}$
$V=1522.64 \AA^{3}$
$Z=2$
$D_{x}=1.223 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction:

$$
\begin{aligned}
& \psi \text { scan } \\
& T_{\min }=0.823, \quad T_{\max }= \\
& 0.976
\end{aligned}
$$

3288 measured reflections
2892 independent reflections
1698 observed reflections $[I \geq 3 \sigma(I)]$

Refinement
Refinement on F
$R=0.05$
$w R=0.06$
$S=1.15$
1698 reflections
266 parameters
$w=1 /\left[\sigma^{2}(F)+0.0038 F^{2}\right]$
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.5418 \AA$
Cell parameters from 25 reflections
$\theta=15-23^{\circ}$
$\mu=0.609 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Needle
$0.50 \times 0.42 \times 0.23 \mathrm{~mm}$
Pale yellow

$$
R_{\mathrm{int}}=0.019
$$

$$
\theta_{\text {max }}=70^{\circ}
$$

$$
h=0 \rightarrow 7
$$

$$
k=0 \rightarrow 25
$$

$$
l=-15 \rightarrow 15
$$

3 standard reflections monitored every 200 reflections intensity decay: <1.2\%

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}$
Cl	0.5983 (5)	0.1854 (1)	-0.18580 (2)	3.85 (7)
C2	0.5001 (5)	0.2018 (1)	-0.29210 (2)	4.09 (8)
C3	0.6013 (5)	0.1813 (1)	-0.37940 (2)	4.43 (6)
C4	0.7969 (5)	0.1448 (1)	-0.36560 (2)	4.28 (6)
C5	0.8893 (5)	0.1289 (1)	-0.25950 (2)	4.03 (7)
C6	0.7950 (5)	0.1476 (1)	-0.17010(2)	3.73 (7)
07	0.5074 (4)	0.2071 (1)	-0.09930 (1)	5.14 (5)
C8	0.9113 (7)	0.1237 (2)	-0.45970 (1)	5.84 (11)
C9	0.2943 (5)	0.2419 (1)	-0.31250 (1)	4.78 (9)
N10	0.2024 (4)	0.2657 (1)	-0.23610 (2)	5.15 (9)
C11	-0.0086 (5)	0.3034 (1)	-0.26520 (3)	6.08 (11)
C12	0.0175 (5)	0.3713 (1)	-0.22590 (2)	4.04 (8)
C13	-0.1383 (6)	0.3994 (1)	-0.16770 (3)	5.77 (11)
C14	-0.1195 (7)	0.4631 (2)	-0.13770 (3)	7.01 (12)
C15	0.0552 (8)	0.4994 (2)	-0.16410 (3)	6.80 (11)
C16	0.2120 (6)	0.4726 (1)	-0.22010 (3)	5.47 (9)
C17	0.1920 (5)	0.4093 (1)	-0.25060 (2)	4.27 (8)
C18	0.9120 (5)	0.1292 (1)	-0.05750 (2)	4.32 (7)
N19	0.9788 (3)	0.0619 (1)	-0.05140 (1)	3.35 (5)
C20	0.7810 (4)	0.0209 (1)	-0.04710 (2)	3.66 (5)
C21	1.1511 (4)	0.0492 (1)	0.04270 (2)	3.54 (4)

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Cl}-\mathrm{C} 2$	$1.408(3)$	$\mathrm{N} 10-\mathrm{Cl1}$	$1.475(4)$
$\mathrm{Cl}-\mathrm{C} 6$	$1.399(4)$	$\mathrm{Cl1}-\mathrm{Cl2}$	$1.496(3)$
$\mathrm{Cl}-\mathrm{O} 7$	$1.355(4)$	$\mathrm{C} 12-\mathrm{Cl}$	$1.388(5)$

$\mathrm{C} 2-\mathrm{C} 3$	$1.388(4)$	$\mathrm{C} 12-\mathrm{C} 17$	$1.378(4)$
$\mathrm{C} 2-\mathrm{C} 9$	$1.469(4)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.377(6)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.376(4)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.362(6)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.394(3)$	$\mathrm{C} 15-\mathrm{C} 16$	$1.364(6)$
$\mathrm{C} 4-\mathrm{C} 8$	$1.508(4)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.371(3)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.376(4)$	$\mathrm{C} 18-\mathrm{N} 19$	$1.454(3)$
$\mathrm{C} 6-\mathrm{C} 18$	$1.518(3)$	$\mathrm{N} 19-\mathrm{C} 20$	$1.458(3)$
$\mathrm{C} 9-\mathrm{N} 10$	$1.268(4)$	$\mathrm{N} 19-\mathrm{C} 21$	$1.460(3)$
$\mathrm{C} 6-\mathrm{Cl}-\mathrm{O} 7$	$120.1(2)$	$\mathrm{C} 9-\mathrm{N} 10-\mathrm{C} 11$	$117.9(3)$
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{O} 7$	$120.8(2)$	$\mathrm{N} 10-\mathrm{C} 11-\mathrm{C} 12$	$112.3(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$119.1(2)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 17$	$120.9(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 9$	$121.1(2)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$121.7(3)$
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	$119.9(2)$	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 17$	$117.4(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 9$	$119.0(2)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$121.0(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$121.9(2)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$120.1(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 8$	$122.3(2)$	$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$120.0(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$117.0(2)$	$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$120.0(3)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 8$	$120.8(3)$	$\mathrm{C} 12-\mathrm{C} 17-\mathrm{C} 16$	$121.6(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$123.6(2)$	$\mathrm{C} 6-\mathrm{C} 18-\mathrm{N} 19$	$111.9(2)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$118.5(2)$	$\mathrm{C} 18-\mathrm{N} 19-\mathrm{C} 21$	$111.6(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 18$	$119.7(2)$	$\mathrm{C} 18-\mathrm{N} 19-\mathrm{C} 20$	$110.6(2)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 18$	$121.7(2)$	$\mathrm{C} 20-\mathrm{N} 19-\mathrm{C} 21$	$109.5(2)$
$\mathrm{C} 2-\mathrm{C} 9-\mathrm{N} 10$	$122.1(2)$		

Refinement was performed by full-matrix least-squares methods. All H -atom parameters were refined except the phenolic H atom which could not be located from the difference Fourier map.

Data reduction: SDP (Frenz, 1978). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELX76 (Sheldrick, 1976). Molecular graphics: PLUTO (Motherwell and Clegg, 1978). Software used to prepare material for publication: PARST (Nardelli, 1983).

KG thanks the University Grants Commission (India) for providing a Fellowship.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: PT1018). Copies may be obtained through The Managing Editor, International Union of Crystallography. 5 Abbey Square. Chester CHI 2 HU . England.

References

Allen, F. H., Kennard, O.. Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2. pp. SI-S19.
Allinger, N. L., Carpenter, J. G. D. \& Karkowski. F. M. (1965). J. Am. Chem. Soc. 87, 1232-1236.
Domenicano, A., Vaciago, A. \& Coulsun, C. A. (1975). Acta Cņst. B31, 221-234.
Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP - a Real-Time System for Concurrent X-ray Data Collection and Crastal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp. H. Van Koningsveld \& G. C. Bassi, pp. 64-71. Delft University Press.
Hodgkin, J. H. (1984). Aust. J. Chem. 37, 2371-2374.
Motherwell, W. D. S. \& Clegg. W. (1978). PLUTO. Program for Plotting Molecular and Crustal Structures. University of Cambridge, England.
Nardelli. M. (1983). Comput. Chem. 7, 95-98
Perales, A., Cano, F. H. \& Garcia-Blanco. S. (1977). Acta Cṇ:st. B33, 3172-3175.
Sheldrick, G. M. (1976). SHELX76. Program for Cnistal Structure Determination. University of Cambridge, England.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crustal Structures. University of Göttingen, Germany.

